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SECTION 1 
INTRODUCTION 

Given for one instant an intelligence which could comprehend all the forces 
by which nature is animated and the respective positions of the beings 
which compose it, if moreover this intelligence were vast enough to submit 
these data to analysis, it would embrace in the same formula both the 
movements of the largest bodies in the universe and those of the lightest 
atom; to it nothing would be uncertain, and the future as the past would be 
present to its eyes. 

—Pierre Simon de Laplace 
Analytic Theory of Probabilities, 1820 

Modern physical theory no longer permits us, even in principle, to be so sanguine about 
the certainty of the future, but we continue to rely on numerical models of events that 
have not yet happened, models built on what Laplace called a calculus of common sense, 
to allay our ignorance. Computers have lately acquired the power to animate these 
models at a level of detail that threatens to exceed our finite comprehension only slightly 
less than does the real world. Fortunately, France also gave us Descartes. 

1.1 BACKGROUND. 

The Defense Nuclear Agency has sponsored the compilation of a library of computer- 
generated nuclear clouds that allows military planners to accurately characterize the 
atmospheric environment near the site of a nuclear burst. The library comprises two- and 
three-dimensional arrays of densities, along with related flow field and temperature data, 
calculated for different weapon yields, heights of burst, times after burst, and particle types 
and sizes. Both the library itself and the hydrodynamic codes that produced it reside on a 
Cray supercomputer at the Los Alamos National Laboratory. 

Visualization, the creation of images from numerical data, is an important part of the 
research and analysis that both inform and follow from the calculation of nuclear cloud 
dynamics. But to visualize data as prolific as the 3D arrays of density values developed by 
the hydrocodes, the only option has been the use of high-end computers running expensive 
data analysis software—Stardent's Advanced Visualization System (AVS) is an example. 
Most people with a valid interest in using the library don't have ready access to such 
systems. 

This report describes a computer program called ICCanvas ("Isosurface Constructor 
Canvas"), an interactive 3D visualization tool that runs in the Microsoft Windows 
environment. ICCanvas allows personal computer users to view level surfaces on 
structured 3D data. Typical sources of data include the outputs of 3D TASS and DICE- 
MAZ, but the program's data model is sufficiently general that it may also be used to 

fiJ-f-ZXGl- 



visualize data from 3D medical imaging (e.g., CT and MRI), geological surveys, or the 
tabulated values of almost any function of three variables. 

ICCanvas supports a custom file format for 3D data arrays that can cut the size of a cloud 
file by two orders of magnitude or more. The program can also export the images and 
surfaces it creates, a handoff capability that can link the cloud library to off-the-shelf CAD 
and 3D rendering applications. 

1.2 REPORT OBJECTIVES. 

This report is a conceptual description of the algorithms employed by ICCanvas and of 
some of the ways the program can be used. Section 2 discusses in some detail the 
approach to surface construction at the heart of the program, along with the viewing 
transformations and rendering methods used to create surface images. Section 3 includes 
a tour of the program from the user's point of view and an introduction to the use of other 
3D rendering applications with ICCanvas, but the bulk of this section is devoted to 
documenting the IC file format. The Appendix contains an enumeration of each of the 
256 entries in the cube case array explained in 2.1.2. The triangles for each cube were 
produced by actually submitting the cube to ICCanvas as a (very small) density array and 
then rendering the output. This output serves as a straightforward, albeit tedious, 
verification of the code. 

Many aspects of our work on ICCanvas, while accounting for a substantial amount of the 
time spent on the program's development, are not treated at length in this report, primarily 
because they can't be discussed at a level of generality that's accessible (or of interest) to 
most readers. These include the mechanics of writing a Windows application, strategies 
for handling large amounts of data in a 16-bit environment, the subtleties of creating 
native-format image and geometry files, and the broad field of 3D rendering. The 
interested reader will find this information in a number of readily available sources. 



SECTION 2 
ALGORITHMS 

2.1 SURFACE CONSTRUCTION. 

A scalar field is a 3D array of values of a function f(x,y,z) tabulated at regular intervals 
of x, v and z. In IC, the scalar field values usually represent densities, but they may be the 
values of other functions of three variables—temperature, field strength, or probability, for 
example. IC imbeds the scalar field in a regular grid consisting of edges that join 
neighboring scalar field values. It then constructs a triangle mesh approximation of a level 
surface or isosurface on the scalar field. A level surface consists of all points (x, y,z) for 
which /(x, v,z) = c for a constant c, called the level. 

The triangle mesh approximation, called simply the surface in what follows, is represented 
by an array VERT [ ] of vertex coordinates and an array FACE [ ] of triangles. Each 
triangle in FACE [ ] is defined by three indexes into the VERT [ ] array, and each vertex is 
defined by three space coordinates. The final sizes of the VERT [ ] and FACE [ ] arrays are 
unknown until surface construction is complete, so vertex and face information is written 
to temporary files, which are read back in and deleted when the build is finished. 

The surface finding approach described in 2.1.1 and 2.1.2 most closely resembles 
Marching Cubes, a method described by Lorensen and Cline (1987). Similar methods 
have been developed by Wyvill et al. (1986) and Bloomenthal (1988). See Hall (1990) for 
a summary of all three methods. Additional remarks on Marching Cubes can be found in 
Durst (1988), Wilhelms and Van Gelder (1990) and Foley et al. (1990). 

2.1.1 Finding Vertices. 

The routine icFindVertices () finds surface vertices on grid edges for which 

(f [n]   > level)   XOR   (f[n+l]   > level)   = TRUE (2.1) 

where [n] is an array index [i, j, k] into the scalar field f, [n+l] represents one of 
[i+1 ,j,k], [i, j +1,k], [i,j,k+1 ], and XOR is the logical exclusive-or operator. 
This is just a formal way of saying that a surface vertex is found on every grid edge whose 
endpoints have values on opposite sides of the level. 

For each edge satisfying Eq. (2.1), two of the three coordinates of the surface vertex are 
fixed by the position of the edge, and the third is found by linear interpolation: 

ufrac = 1 + 254 * (f[n+l] - level)/(f [n+l] - f[n])      (2.2) 

where u is a coordinate in the array index coordinate system. (Array index coordinates 
are 16-bit fixed-point numbers whose integer part is n and whose fractional part is a 
fraction of the distance from f [n] to f [n+l].) Internally, the scalar field and level are 



expressed as logarithms (see 3.2.3), so that the interpolation is actually linear in log space. 
Note too that the calculation is performed using integer arithmetic, and that the constants 
in Eq. (2.2) prevent the surface vertex from lying exactly at the position of a scalar field 
value. 

The coordinates of each surface vertex are written to the vertex temporary file as they are 
found, and an ordinal for the vertex is associated with the grid edge so that it can later be 
retrieved by the surface triangle routine icFindFaces () described in 2.1.2. 

2.1.2 Finding Faces. 

The routine icFindFaces () finds surface triangles by sequentially examining cubes in 
the grid. A cube consists of eight scalar field values, one at each corner, connected by 
twelve grid edges. The relationship of the corner values to the level is written into a single 
8-bit integer, called a cube case number, by 

cube[n]   = = (in[i,j,k] LSHIFT 0) 
+ (in[i+l,j,k] LSHIFT 1) 
+ (in[i+l,j+l,k] LSHIFT 2) 
+ (in[i, j+l,k] LSHIFT 3) 
+ (in[i,j,k+l] LSHIFT 4) 
+ (in[i+l,j,k+l] LSHIFT 5) 
+ (in[i+l,j+l,k+l] LSHIFT 6) 
+ (in[i,j+l,k+l] LSHIFT 7) (2.3) 

where in [n] = 1 when f [n] > level and 0 otherwise, and LSHIFT is the bitwise left 
shift operator. The numbering of cube corners implied by Eq. (2.3), in which the binary 
state in[n] for each cube corner is mapped onto one of the eight bits of the number 
cubefn], is illustrated in the Key to the cube case array (Figure A-l) given in the 
appendix. Note that there are 256 cubes because there are 28 = 256 possible values for 
cube[n]. 

cube [n] forms an index in the range [0, 255] into an array vcase [ ] containing triangle 
descriptions for each variety of cube. Each triangle in vcase [ ] is defined in terms of the 
cube edges, numbered from 0 to 11, on which each of its three vertices lie. For the cube 
at n, each of the cube edges in vcase [cube [n] ] corresponds to a grid edge with 
endpoints f [n], f [n+1] that satisfy Eq. (2.1). Recall from 2.1.1 that vertex ordinals 
have already been associated with these edges. Each surface triangle may therefore be 
defined by three vertex ordinals collected from the appropriate grid edges. The vertex 
ordinals for each surface triangle are written to the face temporary file. 

2.1.3 Surface Compaction. 

Surfaces built as described in 2.1.1 and 2.1.2 tend to contain a significant number of small 
triangles that burden the graphics routines without contributing much to the shape of the 
surface. Some of these triangles may be long, thin slivers that are ill-conditioned or nearly 



degenerate for some rendering algorithms. IC implements a solution called Compact 
Cubes described by Moore and Warren (1991, 1992). 

In the pseudocode that follows, a gridpoint g is just the position of a scalar field value. A 
surface vertex is called a satellite of g if it is closer to g than to any other gridpoint. 

for each surface triangle T 
if the vertices of Tare satellites of different gridpoints 

then produce a new triangle connecting the gridpoints 
else T collapses to a vertex or an edge, so ignore it 

end for 
for each gridpoint g of the new triangle mesh 

displace g to the average position of its satellites 
end for 

The initial use of array index coordinates to define vertices (see 2.1.1) reduces the task of 
determining satellite relationships to a trivial rounding of the coordinates and simplifies the 
production of new triangles. 

2.1.4 Completing the Surface Definition. 

Once all of the vertices and faces have been defined, they are read back in from the 
temporary files, which are destroyed. Vertex coordinates are scaled so that the space of 
the scalar field just fits inside a unit cube. The conversion from array index coordinates to 
a floating-point system with values in [0, 1] (in the context of viewing discussed in 2.2, the 
world coordinate system) simplifies the graphics routines while restoring the aspect of the 
surface—the sampling intervals along each of x, y and z for the scalar field are uniform, 
but in general they are not the same for different axes. 

A normal for each face is calculated as a cross product of two vectors lying along edges of 
the face. For vectors p and q defined as 

p = (x2-x„ y2-yi3 z2-zx)^ 

q=(*i-*3> yx-yit *,-*3) 

where the x, y and z are coordinates of the three face vertices, the normal n is the cross 
product p x q normalized to unit length. Note that two directions for n, symmetric with 
respect to sign, are possible, and that the choice can depend on the order in which the 
vertices are listed. All of the triangles listed in the vcase [ ] array therefore specify 
vertices in clockwise order as seen from outside the surface, so that pxq points outward. 
When a single winding order has been adopted in this way for all vertices, the polygons 
are sometimes said to be oriented. 



2.2 THE VIEWING TRANSFORMATION. 

The coordinates of the VERT [ ] array are specified in the world coordinate system. In 
order to create 2D images that allow the user to see a surface from arbitrary points of 
view, IC creates a view coordinate system and a transformation from world to view 
coordinates that projects surface triangles onto a viewplane. The user controls the view 
through settings of the azimuth 0, latitude <f> and center point r. Azimuth and latitude 
determine the orientation of the viewplane normal n and up unit vector v in the following 
way: 

Wx = -COS0COS0 

ny = -cos^sintf 

nz = - sin 0 

.■Ä  Z.(O,O,D z-(z-n)n 

Note that v is just the projection of the z-axis perpendicular to n. This construction is 
degenerate for v when the user wants to look straight down or straight up (n parallel to z), 
and for that case it is replaced by 

nx=0 

ny=0 

M2 = -sign0 

vx = -sign^cosö 
vy = -sign^sintf 

v, = 0 

where sign^ e {1, -1}. For all cases, the rightward unit vector u must be perpendicular to 
both n and v, a condition satisfied by the vector cross product 

u = nxv 

The center point r becomes the origin of the left-handed view coordinate system with axis 
directions u, v and n. Note that r and n define the viewplane and v determines the 
orientation of the rectangular window (see Figure 3-1). By defining an intermediate 
quantity r' as 

r' = (-ru, -rv, -rn) 

the world to view transformation T^ may be captured by the 4 x 4 matrix 



T     = *wv 

\ Vx "x -nje 
uy vy "y 

-nyle 
Uz V: nz -nje 
r' 

X 
r' 
y K \-rJe 

The scalar e is a displacement along n, in view coordinates, from the viewplane to a point 
called the eye. This distance, which in IC is fixed, controls the amount of perspective 
foreshortening in the image. 

Readers might recognize the viewplane normal n, origin r (also called the view reference 
point or center of projection) and other parts of this development as variations on the 
synthetic camera model, informative descriptions of which are available from almost any 
good 3D graphics text (see, for example, the textbook by Hill (1990)). 

A further scale and translation map from view coordinates to screen pixels. This 
transformation takes into account the user-defined zoom scale factor s^^ and the aspect, 
or relative width and height ax,ay, of the display's pixels. The view is fit into a 
rectangular display window so that a distance of lls^^ just fits the smaller of the two 
window dimensions dx,dy. 

s.. =< 
A> ** »~* «■ ^** ■* v^^ V 

[a /a is    d .    d a > d a \   y I    x /"zoom**y'       "x   x —    y  : 

*v = 
_ J(-axK)*zoom^x»    dxax <dyay 

Szoomdy, da >da 

T 
0        sv 

0 0 
dx/2   dy/2 

0 
0 

1 
0 

0 

0 

0 
1 

In other words, view coordinates are scaled horizontally by su and vertically by sv, and the 
pixel origin is moved to the center of the window. Note that sv is always negative, which 
has the effect of performing a vertical flip. By default in Microsoft Windows, the pixel at 
(0, 0) is in the upper left corner of the client area of the window and the vertical 
coordinate increases downward. 

The complete viewing transformation T is then 

T = x     T X        *WV xscteen 



Figure 2-1. Elements of the viewing system. 
The 3D surface geometry in xyz is not shown. 

Wire Facet Smooth 

Figure 2-2. A tessellated sphere rendered by 
three different methods. The triangle at right 
illustrates intensity interpolation. 



A point p in VERT [ ], extended to include a homogeneous coordinate w = 1, 

P = (A./VA.l) 

is transformed by 

q=pT 

p'= (?*/?*» qyi<iw, qzi<iw) 

2.3 RENDERING AND SCAN CONVERSION. 

One of the advantages of the surface finding method described in 2.1 is that it produces a 
surface defined entirely by a list of triangles. Planar convex polygons are among the 
simplest and best understood objects in 3D graphics, and a large number of methods is 
available for drawing them on the display. IC implements three of them, and for the user 
the choice between them is a tradeoff involving image quality, information content and 
rendering speed (see Figure 3-2). 

The simplest surface representation is a wireframe drawing, produced by drawing the 
edges of each surface triangle. Wireframes are fast. They make the polygonal geometry 
of the surface visually explicit, and since they're transparent, they can show all sides of the 
surface simultaneously. They cannot, however, provide many of the important 3D visual 
cues that users take from a surface drawn more realistically as a shaded solid object. For 
this the user may choose between facet rendering, which remains close to the polyhedral 
surface definition, and more computationally expensive smooth rendering, which treats the 
polygon mesh as an approximation to a continuous surface. 

2.3.1 Hidden Surface Removal. 

Both facet and smooth rendering require the removal of hidden parts of the surface— 
those parts of the surface that are behind other parts and therefore obscured from view. 
Because of the nature of the surfaces produced by the program, IC gets good results using 
very straightforward techniques called back face culling and depth-order traversal. 

Back faces are triangles facing away from the camera, meaning roughly that their normals 
form an angle with the direction of view of more than 90°. In most cases, IC surfaces are 
closed polyhedra for which back faces always represent the enclosed and therefore non- 
visible interior side of the surface. (The exception is a surface truncated at the edge of the 
data.) Back faces are removed from consideration early in the rendering process, which 
on average cuts in half the number of triangles to be rendered. 

Depth-order traversal sorts triangles from far to near and then renders them in that order. 
When possible ambiguities after sorting are ignored, this approach is also known as the 
painter's algorithm, a reference to the way artists sometimes paint closer objects on top of 



more distant ones. In the general case, where polygons may have overlapping extents or 
even interpenetrate, the painter's algorithm will produce incorrect results. The triangles in 
an IC surface, however, are built on a regular grid, which restricts their interactions to 
cases for which the painter's algorithm nearly always succeeds. 

2.3.2 Lighting and Shading 

Lighting and shading are distinct aspects of rendering, but in IC they are both modeled 
simply enough that they may be treated together. IC creates surface images in varying 
shades of gray by putting a point light source at the position of the camera and then 
calculating the intensity of the difliise reflected light at different points on the surface. 
IC's point light source is just a vector giving the direction opposite to the direction of 
illumination. The diffuse reflected intensity at a point on the surface is then the cosine of 
the angle of incidence, which is found as the dot product of the light vector and the 
surface normal at that point. 

Facet and smooth rendering differ in the choice of surface normals and in the number of 
intensity calculations. Facet rendering uses the face normals developed in 2.1.4 to assign a 
shade of gray to an entire triangle. This constant shading accounts for the surface's 
faceted appearance. Smooth rendering uses a technique called Gouraud interpolated 
shading (Gouraud 1971). 

IC develops surface normals at the vertices of triangles by summing the components of the 
face normals for faces sharing each vertex, and for each triangle an intensity is calculated 
for its three vertices using the dot product relation. Gouraud shading finds intensities for 
points on triangle edges by linear interpolation between the endpoint vertices. An intensity 
for any interior point of the triangle may then be found by interpolation between the two 
edges that cross that point's scanline, the horizontal row of pixels in which the 
transformed point lies. 

For facet rendering (and wireframes), the job of setting individual pixel values on the 
display for each triangle, called scan conversion, is performed by low-level graphics 
routines in the Windows video driver for the display hardware. The IC DLL passes the 
pixel coordinates of the triangle vertices to the Windows function Polygon () 
(Polyline () for wireframes). Gouraud shading, however, is an integral part of scan 
converting a triangle, and IC must therefore perform its own scan conversion. The scan 
conversion routines in IC closely follow code by Heckbert (1990). 

10 



SECTION 3 
RESULTS 

3.1 AN INTERACTIVE PC-BASED PROGRAM. 

Over the contract period, ICCanvas has evolved from a DOS program with limited 
viewing and display capabilities, modest mouse support, a text-based interface and 
substantial memory constraints into a full-fledged 3D visualization tool for Windows with 
online help, complete viewing controls, Gouraud interpolated shading, and the ability to 
export both images and 3D geometry. The paragraphs that follow briefly describe the 
operation of the program in its current form from the user's point of view. See Figure 3-1 
for an idea of what the user actually sees. 

The ICCanvas program package consists of the program file iccanvas.exe, the dynamic- 
link library iclib.dll, which contains functions implementing the algorithms of Section 2, 
and the online help file ichelp.hlp. The package is installed by copying these three files to 
the user's hard drive and performing the usual Windows procedure for making the 
program's icon visible and selectable from the Windows Program Manager. 

To begin an ICCanvas session, the user picks the Open menu option in the File menu to 
open an IC format data file containing a 3D array of densities. The program examines this 
file and displays an approximate distribution of the densities it contains using the Level 
dialog. By default the level is set to the median value in this distribution, but it may be 
changed to any value. 

Once the data file is chosen and the level set, ICCanvas reads the data and constructs a 
surface. The progress of the build is displayed, and during most ofthat time (typically 5 to 
10 seconds) the user is given the option of cancelling the build. Assuming it is allowed to 
finish, the program then draws the surface on the display. 

To view the surface from different angles, the user can click and hold the left mouse 
button anywhere in the display, and by moving the mouse change the orientation of the 
view. A picture of a square representing the ground plane with a vertical axis attached at 
one corner (the axis image) is drawn on top of the surface while the left mouse button is 
held down. Moving the mouse changes the orientation of the axis image, and when the 
left mouse button is released the surface is redrawn at the new viewing angle. 

The user is given greater control over the view through a Camera dialog and Center menu 
option, both available from the Settings menu. The Camera dialog allows the user to enter 
the viewing angles, called azimuth and latitude, in degrees. The angle edit fields are linked 
to a miniature axis image, and when either the text or the image is manipulated, the other 
is updated to reflect the change. Another control, called Zoom, allows the user to magnify 
or shrink the image in the display. The Camera dialog also offers six predefined views 
(Top, Front, etc.) to simplify the specification of axis-aligned orientations. 

11 
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Figure 3-1. Elements of the ICCanvas user interface. 
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The Center menu option is used to pick a new center point for the display. The mouse 
cursor is changed to a crosshair, and a small window is opened to report the position of 
the cursor in 3D object coordinates as it moves. While centering, the mouse cursor is 
actually moving in 3D along the plane of the display, and this can be useful, within limits, 
for locating specific features on a surface. 

To build a surface from the same data but with a different level, the user can call up the 
Level dialog from the Settings menu. The table of levels displayed in the Level dialog tries 
to give some indication of the distribution of densities in the data. Each level is paired 
with a percentage that tells how many of the non-zero data points will be enclosed by a 
surface at that level. In this respect, ICCanvas assumes that the data represents a mass of 
some arbitrary shape sitting in a rectangular void. The statistics in the list attempt to be 
relevant to the mass and not to the void. 

The surface can be drawn, or rendered, in one of three ways controlled by the Render 
Style menu options in the Settings menu. By default, surfaces are rendered in the Facet 
style, which uses constant shading to draw each surface triangle. The results are fast and 
solid-looking but somewhat rough-hewn. Smooth rendering uses Gouraud interpolated 
shading, which looks better but takes longer. The very fast Wire option completely 
reveals the triangle mesh. 

ICCanvas also allows the user to transfer images and surface geometry to files or to other 
programs through the Save Image, Save Surface, and Copy Image menu options. Images 
can be saved to disk as Windows BMPs, PC Paintbrush PCX files or Macintosh PICTs. 
The display can also be copied to the Windows clipboard, to be retrieved by another 
program currently running. The Save Surface options write the 3D geometry of a surface 
in either AutoCAD DXF or Wavefront OBJ format. Because of its complexity, the Print 
option isn't available in ICCanvas, but the ability to export both images and geometry 
gives the user the choice of any print-capable off-the-shelf software for producing 
ICCanvas hard copy. 

For better support of image export, the user can control the colors of the background and 
the floor as well as the precise dimensions of the display. The Window Size dialog reports 
the size of the display (strictly speaking, the size of the windows's client area) in either 
pixels (picture dots) or inches. 

3.2 DATA COMPRESSION AND THE IC FILE FORMAT. 

On larger computer systems, storage has historically been cheap and programming effort 
expensive. This economy, combined with the widespread use of FORTRAN in the 
simulation community, has led to the storage of 3D hydrocode results in collosal text files 
measured in gigabytes. In order for IC to be practical as a PC-based application, it was 
recognized very early that a faster and much smaller file format for density data was 
needed. 
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3.2.1 Text vs. Binary 

The performance penalty in reading a large text file arises partly from the file's size, but it 
is mostly a result of the representation of numbers as strings of characters. When reading 
numbers as text, a program must feel its way one character at a time, first to parse the 
character stream into individual numbers by looking for delimiters (commas and spaces, 
for example), and then to convert the digit string (really a polynomial in the number base, 
10) into a base 2 bit string understood by the machine. Binary files that store numbers in 
machine-readable form eliminate the need for both parsing and conversion; the increase in 
reading speed over text files is often two orders of magnitude. Binary files are usually 
smaller, too. 

To better appreciate the impact this has on program performance, as well as the influence 
of user expectations, consider that each frame—1/30 second—of broadcast television, if 
stored as discrete samples of the NTSC waveform, would require well over a megabyte of 
text and take on the order of tens of seconds for a computer to read from a hard disk. No 
one would watch a TV system with a refresh rate of 0.05 Hz, and the inertia of large text 
files similarly mitigates against the usefulness of 3D density arrays. 

Since the output of 3D TASS and DICE-MAZ, for example, isn't meant to be read 
directly by humans, the primary benefit of text output for these codes is that it is easily 
transported between machines that may have different binary number representations. 
This is especially true for files produced on supercomputers, whose idiosyncratic internal 
number formats are shared by very few machines. With a little effort, however, it is 
almost always possible to write binary files on one platform that can be read on another, 
and with its enormous installed base, the PC platform is a reasonable target for such effort. 
Figure 3-2 provides an example of how this is done. 

3.2.2 Run-Length Encoding. 

Run-length encoding (RLE) eliminates redundancy in a data array by replacing runs of 
equal values with a count followed by a single instance of the value. In what is sometimes 
called adaptive RLE, the count is also a code that distinguishes between repeat runs and 
literal runs, which eliminates the need for a count of 1 before each data value not part of a 
repeat run. IC uses the following interpretation of its RLE codes (n): 

n>0 

n<0 

a run of n + 1 data values follows 

repeat the next value -n + 1 times 

The sequence 

12333444 

is encoded as 
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/* 

make_float() 

Convert a float to an IEEE bit string. 

INPUTS 
x 

CALLS 
fabs() 
frexp() 

floating-point value 

math.h, floating-point absolute value 
math.h, split FP number into exponent and mantissa 

RESULTS 
The value of x is written to a byte array as an arrangement of bits 
representing an IEEE 4-byte float in Intel byte order, and the byte 
array is returned. 

+ + 
|  0       1       2       3 Bit pattern for the   | 
|  76543210 76543210 76543210 76543210       IEEE 4-byte float in   | 
|  mmimimmmim mmmmmmmm emmmmmmm seeeeeee       Intel byte order.      | 
+ + 
I  sign    exp     mant    value I 
I    | 
|00        0      0.0 I 
I     0    127        0      1.0 IEEE representations   | 
|   any    255        0      INF of some values of     | 
I   any    255    not 0      NAN interest. | 
+ + 

*/ 

static char  *make_float(   float x  ) 
{ 

static char c[ 4 ]; 
int e, s; 
unsigned long m; 
double d; 

d = fabs( frexp(( double ) x, &e )); 
m = ( unsigned long )( d * ( 1L « 24 )) 
s = ( x < 0.0 ); 
e += 126; 

& 0x007FFFFF; 

c[ 0 ] = m & OxFF; 
c[ 1 ] = ( m » 8 ) &  OxFF; 
c[ 2 ] = (( m » 16 ) & 0x7F ) | (( e &  1 ) « 7 ) ; 
c[3]=((e»l)i 0x7F ) | ( s « 7 ); 
return c; 

Figure 3-2. Example source code for the creation of an 
Intel/IEEE 4-byte float on any machine. 
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112-23-24. 

Evidently, the amount of compression varies with the number of values that are part of 
repeat runs. In the average case for typical IC data, there are long runs of O's that account 
for most of the extra space squeezed out of a file by RLE. In the worst case, which 
contains no repeat runs longer than 2, an optimal implementation of RLE will add no more 
than 1 to the length of a data array. Optimal RLE doesn't try to encode repeat runs of 
length 2. Consider the sequence 

12   3   3   4. 

Treating the 3's as a repeat run yields 

112-1304 

whereas encoding the whole sequence as a literal run leads to 

4   12   3   3   4. 

3.2.3 A 16-Bit Real Number Format. 

In IC, floating-point density values x are scaled into 2-byte integers by the C-language 
expression 

x <= le-16 ? 0 : 2048 * loglO( x ) + 32768 

In terms of precision and range, this is equivalent to using 5-place common logarithms for 
values between 10~16 and 1016. There are a number of advantages in using this format for 
densities in memory as well as in data files, some of which are listed here. 

1. 2-byte integers are smaller than the 4-byte and 8-byte binary formats available for 
floating point numbers. This has a significant effect on file size, but it more 
importantly affects the size of density data in memory. In general, segmented memory 
addressing under MS-DOS places an upper limit of 64K on the amount of memory 
that can be addressed by a single pointer. Within this limit, a 2D array of density 
values can be as large as 181 x 181 with the 2-byte format, while an array of 4-byte 
floats can be no larger than 128 x 128. 

2. Integer arithmetic is faster than floating-point. (The only actual arithmetic operations 
performed on density values are comparison, for which the format is numerically 
irrelevant, and interpolation, for which the use of log scaling has the beneficial side 
effect of creating smoother surfaces on data with large gradients.) 

3. Because of the way surface points are inferred from the density data, 16 bits is just the 
right amount of precision for this data (assuming, fairly safely, that the data varies over 
a significant fraction of the number format's range). 
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4. RLE is more difficult to implement efficiently when the codes and data values are of 
different numeric types, especially in languages other than assembler and C. 

5. Using the same format in memory and on disk eliminates the need to perform a 
conversion when moving from one to the other. 

3.2.4 Other Compression Methods. 

Other compression schemes were considered. At least one PC-based application for 
rendering landscapes from U.S. Geological Survey data stores arrays of 16-bit elevations 
in runs of 8-bit deltas, or changes in elevation. This works because most elevation 
gradients are sufficiently small that the change between sample points is usually less than 
128 meters, the maximum change that can be captured in 8 bits. Delta encoding over time 
is quite common in digital animation formats, since the change from one image frame to 
the next is also usually small. At the relatively low data resolutions for which IC was 
designed, however, the deltas between sample points (in both space and time) are too 
large for delta encoding to yield much data compression in the general case. 

Another technique from image file formats segregates the bits of an integer pixel code into 
bitplanes and run-length encodes the bitplanes separately. Much of the compression 
benefit from this approach derives from its ability to encode different pixel depths 
(numbers of bits per pixel), which for IC would be impractical to implement. Note too 
that at 16 bits per pixel (or data point), the encoder must find 48 consecutive bits that are 
the same, aligned on 16-bit boundaries, before it can remove a single byte from the file 
size. Even for the highest order bits in typical IC density data—even for long runs of 
zeroes, in fact—this happens less frequently than one might suppose. 

Other possibilities include various kinds of Huffman and Lempel-Ziv-Welch coding or a 
discrete cosine transform such as that used in JPEG (Joint Photographic Experts Group) 
image compression. The difficulty with these approaches, especially DCT, is their 
complexity, which has an impact both on program performance during decoding and on 
the ease with which programmers can implement their own IC file format code, and with 
the exception of DCT, dramatic improvement in compression is unlikely. 

3.2.5 The IC File Format. 

The binary format of simple data types in an IC data file is based on the internal formats of 
most popular C compilers running on Intel 80x86 PCs. The byte order places the most 
significant byte at the highest linear address, an order sometimes called big-endian in 
imitation of Swift (1727). As used here, the C types short and long are 2- and 4-byte 2's 
complement integers. The C type float is a 4-byte IEEE floating-point number (IEEE 
1985). The header structure described below is packed, meaning that no extra bytes are 
allowed between structure members. The file format, however, aligns all data in the file 
on 2-byte boundaries. 

17 



IC data files consist of 3D density data preceded by a 118-byte header giving the size of 
the grid, the spacing of the data points along each axis, and other information about the 
data. 

typedef struct { 
unsigned short 
float 
float 

} AXIST; 

typedef struct { 
char 
char 
unsigned short 
long 
float 
AXIST 

}   HEADER; 

comment 

reserved 

percentile 

creation date 

simulation time 

axis 

size- 
scale; 
offset; 

comment[ 40 ]; 
reserved; 
percentile[ 9 ]; 
creation_date; 
simulation_time; 
axis[ 3 ]; 

A 40-character NULL-terminated string identifying and describing 
the data. This string is displayed in the Level and Progress dialogs. 

This space is currently ignored. 

An array containing an approximate distribution for the densities. 
At each decile interval from 90% to 10%, the array gives the level 
at which that percentage of the non-zero data points will be 
enclosed in an isosurface at that level. This is the information 
displayed by the Level dialog. Levels are written in the same 16-bit 
format described in 3.2.3 for the density data. 

This is a creation date and time written as a 4-byte integer in the 
manner of the ANSI function time (), which returns the number of 
seconds since 00:00:00 January 1, 1970. It is meant to document 
when the original data was created, but may also be used to record 
when the IC format file was generated from the data. 

If appropriate for the data, this stores the time in floating-point 
seconds from the time origin. For simulations that produce data at 
a sequence of time points, this field can be used to give the time 
coordinate. The simulation time is displayed in the Level and 
Progress dialogs. 

An array of three structures giving the dimensions (size), distance 
between data points (scale), and offsets from the origin. The scale 
and offset values are in arbitrary units. Having a scale for each axis 
allows ICCanvas to anisotropically scale its surfaces for cases 
where the volumetric cells, or voxels, from which the data have 
presumably been sampled are not cubes.     The offsets allow 
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ICCanvas to preserve spatial information in cases where a 
simulation has tracked a moving mass to keep it within the 
bounding box of its space. Both scale and offset are taken into 
account when a surface is saved with the Save Surface menu 
options. 

The header is followed by the actual density data. Densities are expressed in arbitrary 
units, although by convention they have been in grams per cubic centimeter. Each density 
value is packed into 16 bits as described in 3.2.3. Densities from each x-y plane, or slice, 
of data are then run-length encoded as described in 3.2.2. Each compressed slice in the 
file is preceded by a 2-byte integer giving the compressed size of the slice. 

An IC format data file may be summarized as 

HEADER (118 bytes) 
si, size of first slice (2 bytes) 
the first slice (si * 2 bytes) 

begins with nl, the first RLE code (2 bytes) 
first run 
RLE code n2 
second run... 

s2 (2 bytes) 
the second slice (s2 * 2 bytes) 

begins with nl, the first RLE code (2 bytes) 

and so on for header. axis [2 ]. size slices. 

3.3 ADVANCED MICROCOMPUTER VISUALIZATION. 

A part of our work on ICCanvas has been devoted to marrying the program's surface 
creation capability to sophisticated commercial 3D rendering applications available for 
small systems. The rendering software with which we have the most experience is called 
Lightwave. (There is some irony in the fact that Lightwave author Allen Hastings worked 
on cloud modeling for a defense contractor before turning to the development of 
commercial software.) Lightwave is used to produce all of the spaceflight scenes for the 
syndicated television show "Babylon 5" and many of the underwater scenes for the NBC 
series "Seaquest DSV." 

The evolution of a nuclear cloud over time is captured by ICCanvas as a series of models, 
one for each time point in the density database, ideally, each object would be loaded into 
the 3D rendering program at the appropriate frame on the basis of a sequence number that 
formed part of the object's filename. This is a frequently used technique for sequences of 
images. Consider a computer-animated scene in which a giant reptile threatens the 
patrons of a drive-in theater. The movie playing on the screen in the background is 
actually a planar image map. For each frame of the reptile animation, a single frame of the 
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movie is loaded and painted onto the screen object's surface. The association of each 
movie frame with a frame of reptile animation is automatic and is determined in part by 
sequence numbers imbedded in the filenames of the movie frames. Unfortunately, similar 
sequences of objects are not so readily supported, possibly because objects are presumed 
to be hand-made. There are other, more indirect approaches, however. 

In Lightwave, the visibility of an object is controlled by a property called Dissolve. 
Dissolve is an object property distinct from Transparency, which is a surface property. An 
object all of whose surfaces are fully transparent may still participate in refraction and 
shadow calculations and may exhibit specular reflection (glossy highlights), whereas a fully 
dissolved object is considered absent from the scene. The loading of an object and the 
setting of its Dissolve property can be controlled from a script file, and it is a simple 
matter to write a program that automatically generates the appropriate script for any 
sequence of objects. 

In the script fragment that follows, a step function is created for the Dissolve property that 
causes the object to be visible in a single frame of the animation. 

LoadObject LW:Objects/tcw_0420.1w 
ObjDissolve (envelope) 

1 
5 
1.0 
0 1 0.0 0.0 0.0 
1.0 
35 1 0.0 0.0 0.0 
0.0 
36 1 0.0 0.0 0.0 
1.0 
37 1 0.0 0.0 0.0 
1.0 
56 1 0.0 0.0 0.0 

EndBehavior 1 
ShadowOptions 7 

Note that almost every time-dependent component of an animation, including Dissolve, is 
defined sparsely, through keyframes, and interpolated (tweened) for other frames. This 
fragment specifies 5 keyframes; the value of Dissolve is 0.0 at frame 36 and 1.0 
everywhere else. A program is needed to generate these scripts because an animation 
involving even a few level surfaces per time point can require the precise specification of 
Dissolve envelopes for hundreds of objects. 

As this example implies, the use of 3D rendering for visualization is different from the use 
of high-end software designed specifically for data analysis. 3D rendering is an artist's 
tool that has more in common with the making of a movie. In Figure 3-1, a single frame 
from a cloud animation is accompanied by 5 wireframe views of the "stage" on which the 
animation was created. A key light responsible for most of the illumination in the scene 
shines down on the cloud from above and creates a shadow on the ground. A lower 
intensity fill light brightens self-shadowed areas of the cloud. The semi-transparent green 
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W 
Overhead y-axis Perspective 

What the key light sees What the camera sees 

Figure 3-3. One frame from a cloud growth animation. 
The wire diagrams show the scene from various points of view. 
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rectangle slides slowly across the ground in the animation to depict the way TASS shifted 
its origin to keep the cloud centered in its data space. The attenuation of the background 
brightness was created by an effect called Distant Fog; its purpose here is to focus 
attention on the objects in the foreground. The entire scene is anti-aliased to remove high 
frequency image components that in video cause artifacts such as stairstep lines, rainbows 
and jitter. 
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APPENDIX 

THE CUBE CASES 

Edge Number 
Corner Number 

Data Point < Level 

Surface Triangle 

Data Point > Level 

Case Number 
4   00000100 

0   00000000 1   00000001 2   00000010 3   00000011 

4   00000100 5   00000101 6   00000110 7   00000111 

a 00001000 9   00001001 10   00001010 11   00001011 

12   00001100 

-^ 

13   00001101 14   00001110 15   00001111 

Figure A-l. The cube cases. 

A-l 



16   00010000 17   00010001 18   00010010 19   00010011 

20   00010100 21   00010101 22   00010110 23   00010111 

24   00011000 25   00011001 26   00011010 27   00011011 

28   00011100 29   00011101 30   00011110 31   0001 1111 

32   00100000 33   00100001 34   0010 0010 35   00100011 

36   00100100 37   00100101 I 38   00100110 39   0010 0111 

Figure A-l. The cube cases (continued). 

A-2 



40   00101000 

44   00101100 

41   00101001 

^*r 
45   00101101 

42   00101010 

46   00101110 

43   00101011 

47   00101111 

48   00110000 49   00110001 50   00110010 51   00110011 

52   00110100 53   00110101 54   00110110 55   00110111 

56   00111000 57   00111001 58   00111010 59   00111011 

60   00111100 61   00111101 62   00111110 63   00111111 

Figure A-l. The cube cases (continued). 
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64   01000000 65   01000001 01000010 67   0100 0011 

68   01000100 69   01000101 70   01000110 71   01000111 

72   01001000 73   01001001 74   01001010 75   01001011 

76   01001100 77   01001101 78   01001110 79   01001111 

80   01010000 81   01010001 82   01010010 83   01010011 

84   01010100 85   01010101 86   01010110 87   0101 0111 

Figure A-l. The cube cases (continued). 
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88   01011000 89   01011001 90   01011010 91   01011011 

92   01011100 93   01011101 94   01011110 95   01011111 

96   01100000 97   01100001 98   01100010 99   01100011 

100   01100100 101   01100101 102   01100110 103   01100111 

104   01101000 105   01101001 106   01101010 107   01101011 

108   01101100 109   01101101 110   01101110 111   01101111 

Figure A-l. The cube cases (continued). 
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112   01110000 113   01110001 114   01110010 115   01110011 

116   01110100 

120   01111000 

117   01110101 

121   01111001 

118   01110110 

122   01111010 

119   01110111 

123   01111011 

124   01111100 125   01111101 126   01111110 127   01111111 

128   10000000 129   10000001 130   10000010 131    10000011 

132   10000100 133   10000101 134   10000110 135   10000111 

Figure A-l. The cube cases (continued). 
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136   10001000 137   10001001 138   10001010 139   10001011 

140   10001100 141   10001101 142   10001110 143   10001111 

144   10010000 145   10010001 146   10010010 147   10010011 

148   10010100 149   10010101 150   10010110 151   10010111 

152   10011000 153   10011001 154   10011010 155   10011011 

156   10011100 157   10011101 158   10011110 159   10011111 

Figure A-l. The cube cases (continued). 
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160   10100000 

164   10100100 

168   10101000 

172   10101100 

161   10100001 

165   10100101 

169   10101001 

173   10101101 

162   10100010 

166   10100110 

170   10101010 

174   10101110 

163   10100011 

167   10100111 

171   10101011 

175   10101111 

176   10110000 177   10110001 178   10110010 179   10110011 

180   10110100 181   10110101 182   10110110 183   10110111 

Figure A-l. The cube cases (continued). 

A-8 



184   10111000 185   10111001 186   10111010 187   10111011 

188   10111100 189   10111101 190   10111110 191    10111111 

192   11000000 193   11000001 194   11000010 195   11000011 

196   11000100 197   11000101 198   11000110 199   11000111 

200   11001000 201   11001001 202   11001010 203   11001011 

204   11001100 205   11001101 206   11001110 207   11001111 

Figure A-l. The cube cases (continued). 
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208   11010000 209   11010001 210   11010010 211    11010011 

212   11010100 213   11010101 214   11010110 215   1101 0111 

216   11011000 217   11011001 218   1101 1010 219   11011011 

220   11011100 221   11011101 222   11011110 223   11011111 

224   11100000 225   11100001 226   11100010 227   11100011 

228   11100100 229   11100101 I 230   11100110 231    11100111 

Figure A-l. The cube cases (continued). 

A-10 



232   11101000 233   11101001 234   11101010 235   11101011 

236   11101100 237   11101101 238   11101110 11101111 

240 11110000 241 11110001 242 11110010 243 11110011 

244 11110100 245 11110101 246 11110110 247 11110111 

248 11111000 249 11111001 250 11111010 251 11111011 

252 11111100 253 11111101 254 11111110 255 11111111 

Figure A-l. The cube cases (continued). 
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